Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66.960
Filtrar
1.
FASEB J ; 38(7): e23595, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572811

RESUMO

This study evaluates the sustained antidepressant-like effects and neurogenic potential of a 3-day intranasal co-administration regimen of galanin receptor 2 (GALR2) agonist M1145 and neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31, Pro34]NPY in the ventral hippocampus of adult rats, with outcomes analyzed 3 weeks post-treatment. Utilizing the forced swimming test (FST), we found that this co-administration significantly enhances antidepressant-like behaviors, an effect neutralized by the GALR2 antagonist M871, highlighting the synergistic potential of these neuropeptides in modulating mood-related behaviors. In situ proximity ligation assay (PLA) indicated a significant increase in GALR2/NPYY1R heteroreceptor complexes in the ventral hippocampal dentate gyrus, suggesting a molecular basis for the behavioral outcomes observed. Moreover, proliferating cell nuclear antigen (PCNA) immunolabeling revealed increased cell proliferation in the subgranular zone of the dentate gyrus, specifically in neuroblasts as evidenced by co-labeling with doublecortin (DCX), without affecting quiescent neural progenitors or astrocytes. The study also noted a significant uptick in the number of DCX-positive cells and alterations in dendritic morphology in the ventral hippocampus, indicative of enhanced neuronal differentiation and maturation. These morphological changes highlight the potential of these agonists to facilitate the functional integration of new neurons into existing neural circuits. By demonstrating the long-lasting effects of a brief, 3-day intranasal administration of GALR2 and NPY1R agonists, our findings contribute significantly to the understanding of neuropeptide-mediated neuroplasticity and herald novel therapeutic strategies for the treatment of depression and related mood disorders, emphasizing the therapeutic promise of targeting neurogenesis and neuronal maturation processes.


Assuntos
Neuropeptídeo Y , Neuropeptídeos , Ratos , Animais , Receptor Tipo 2 de Galanina/agonistas , Receptor Tipo 2 de Galanina/metabolismo , Administração Intranasal , Galanina/farmacologia , Galanina/metabolismo , Hipocampo/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Neuropeptídeos/farmacologia , Antidepressivos/farmacologia , Neurogênese
2.
Eur Rev Med Pharmacol Sci ; 28(6): 2272-2287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567590

RESUMO

OBJECTIVE: This study aimed to systematically evaluate the efficacy, safety and optimal dose of polyethylene glycol loxenatide (PEX168) for treating type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: Clinical trials of PEX168 for T2DM were identified in 8 databases, with a build time limit of January 2023. Included studies were subjected to meta-analysis and trial sequential analysis (TSA). RESULTS: On the efficacy endpoint, the meta-analysis showed that PEX168 100 µg significantly reduced 0.86% glycated hemoglobin type A1c (HbA1c) (MD -0.86, 95% CI -1.02 - -0.70,  p<0.00001), 1.11 mmol/L fasting plasma glucose (FPG) (MD -1.11, 95% CI -1.49 - -0.74, p<0.00001) and 1.91 mmol/L 2h postprandial glucose (PPG) (MD -1.91, 95% CI -3.35 - -0.46, p=0.01) compared with placebo. The TSA showed that all these benefits were conclusive. On safety endpoints, total adverse events (AEs), gastrointestinal (GI) AEs, serious AEs, and hypoglycemia were comparable to placebo for PEX168 100 µg (p>0.05). In the dose comparison, the HbA1c, FPG, and 2h PPG of PEX168 200 µg were comparable to 100 µg (p>0.05), while GI AEs were significantly higher than 100 µg (RR=2.84, 95% CI 1.64-4.93,  p=0.0002). CONCLUSIONS: PEX168 100 µg can significantly lower blood glucose and does not increase the risk of total AEs, GI AEs, and hypoglycemia, which may be a preferred glucagon-like peptide-1 receptor agonist for type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Peptídeos , Polietilenoglicóis , Humanos , Hipoglicemiantes , Hemoglobinas Glicadas , 60650 , Glicemia , Hipoglicemia/induzido quimicamente , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
3.
Pharmacoepidemiol Drug Saf ; 33(4): e5790, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575389

RESUMO

PURPOSE: The prevalent new user design extends the active comparator new user design to include patients switching to a treatment of interest from a comparator. We examined the impact of adding "switchers" to incident new users on the estimated hazard ratio (HR) of hospitalized heart failure. METHODS: Using MarketScan claims data (2000-2014), we estimated HRs of hospitalized heart failure between patients initiating GLP-1 receptor agonists (GLP-1 RA) and sulfonylureas (SU). We considered three estimands: (1) the effect of incident new use; (2) the effect of switching; and (3) the effect of incident new use or switching, combining the two population. We used time-conditional propensity scores (TCPS) and time-stratified standardized morbidity ratio (SMR) weighting to adjust for confounding. RESULTS: We identified 76 179 GLP-1 RA new users, of which 12% were direct switchers (within 30 days) from SU. Among incident new users, GLP-1 RA was protective against heart failure (adjHRSMR = 0.74 [0.69, 0.80]). Among switchers, GLP-1 RA was not protective (adjHRSMR = 0.99 [0.83, 1.18]). Results in the combined population were largely driven by the incident new users, with GLP-1 RA having a protective effect (adjHRSMR = 0.77 [0.72, 0.83]). Results using TCPS were consistent with those estimated using SMR weighting. CONCLUSIONS: When analyses were conducted only among incident new users, GLP-1 RA had a protective effect. However, among switchers from SU to GLP-1 RA, the effect estimates substantially shifted toward the null. Combining patients with varying treatment histories can result in poor confounding control and camouflage important heterogeneity.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Compostos de Sulfonilureia/uso terapêutico , Fatores de Risco , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/induzido quimicamente , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes/uso terapêutico
4.
Nature ; 628(8008): 664-671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600377

RESUMO

Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.


Assuntos
Colesterol , Espaço Intracelular , Receptores Acoplados a Proteínas G , Paladar , Humanos , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacologia , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Reprodutibilidade dos Testes , Paladar/efeitos dos fármacos , Paladar/fisiologia , Transducina/química , Transducina/metabolismo , Transducina/ultraestrutura
6.
Expert Opin Drug Metab Toxicol ; 20(4): 175-179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594810

RESUMO

INTRODUCTION: Over the last few years, there has been a substantial increase in the data available about the benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in improving cardiovascular and renal outcomes in patients with type 2 diabetes (T2D). Very little new information is available for the other groups of glucose-lowering drugs. AREAS COVERED: This brief report summarizes the recent information about the respective benefits of the two newer groups of glucose-lowering drugs and the effects on cardiovascular risk factors that may be involved in these benefits. The articles reviewed were identified by a Medline search. EXPERT OPINION: Recent guidelines recommend SGLT2 inhibitors or GLP-1 RAs with proven cardiovascular disease benefits as potential first line treatment for patients with T2D and established atherosclerotic cardiovascular disease (ASCVD) or those with high risk of ASCVD or with chronic kidney disease or heart failure. Both groups of drugs have been shown to reduce major adverse cardiovascular events, but the mechanisms vary between them. SGLT2 inhibitors are preferred for the treatment and prevention of heart failure and chronic kidney disease, whereas GLP-1 RAs are more effective in reducing body weight and improving glycemic control in patients with T2D.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/administração & dosagem , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Fatores de Risco de Doenças Cardíacas , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Guias de Prática Clínica como Assunto , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia
7.
Expert Opin Ther Pat ; 34(1-2): 71-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573177

RESUMO

INTRODUCTION: The neuropeptide relaxin-3/RXFP3 system belongs to the relaxin/insulin superfamily and is involved in many important physiological processes, such as stress responses, appetite control, and motivation for reward. Although relaxin-3 is the endogenous agonist for RXFP3, it can also bind to and activate RXFP1 and RXFP4. Consequently, research has been focused on the development of RXFP3-specific peptides and small-molecule ligands to validate the relaxin-3/RXFP3 system as a novel drug target. AREAS COVERED: This review provides an overview of patents on the relaxin-3/RXFP3 system covering ligand development and pharmacological studies since 2003. Related patents and literature reports were obtained from established sources including SciFinder, Google Patents, and Espacenet for patents and SciFinder, PubMed, and Google Scholar for literature reports. EXPERT OPINION: There has been an increasing amount of patent activities around relaxin-3/RXFP3, highlighting the importance of this novel neuropeptide system for drug discovery. The development of relaxin-3 derived peptides and small-molecule modulators, as well as behavioral studies in rodents, have shown that the relaxin-3/RXFP3 system is a promising drug target for treating various metabolic and neuropsychiatric diseases including obesity, anxiety, and alcohol addiction.


Assuntos
Neuropeptídeos , Relaxina , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Patentes como Assunto , Insulina/metabolismo , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/metabolismo
9.
Rev Med Liege ; 79(4): 260-264, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38602215

RESUMO

Patients with type 2 diabetes (T2D) are frequently exposed to comorbidities, mainly cardiovascular complications. Thus, a polypharmacy is often mandatory, targeting not only T2D but also comorbidities such as coronary artery disease and heart failure. Interestingly, some drugs improve glucose control, cardiovascular prognosis and heart failure outcome. This versatility may cause trouble regarding prescriptions by practitioners, especially because of the restricted conditions for the reimbursement in Belgium. This clinical vignette aims at discussing the path of pharmacotherapy for a patient with T2D who suffers from a myocardial infarction and subsequently develops a heart failure. It will mainly focus on the place of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporters 2 (gliflozins) as well as the potential of their combination in this context, considering the current restrictions for the reimbursement.


Le patient avec un diabète de type 2 (DT2) est souvent exposé à diverses comorbidités, notamment cardiovasculaires. Dès lors, une polymédication est souvent nécessaire, ciblant le DT2 lui-même, mais aussi les comorbidités comme une coronaropathie et une insuffisance cardiaque. De façon intéressante, certaines médications améliorent à la fois le contrôle glycémique, le pronostic cardiovasculaire et le devenir de l'insuffisance cardiaque. Cette polyvalence peut jeter le trouble en ce qui concerne les prescriptions chez les praticiens, notamment en lien avec les conditions restrictives de remboursement en Belgique. Cette vignette clinique a pour but d'illustrer le cheminement de la pharmacothérapie d'un patient avec un DT2 qui présente un infarctus du myocarde puis, secondairement, une insuffisance cardiaque. Elle ciblera surtout la place des agonistes des récepteurs du glucagon-like peptide-1 et des inhibiteurs des cotransporteurs sodium-glucose de type 2 (gliflozines), et expliquera l'intérêt de leur combinaison dans ce contexte en tenant compte des conditions actuelles de remboursement.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insuficiência Cardíaca/complicações , Doença da Artéria Coronariana/complicações , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Doenças Cardiovasculares/complicações
10.
PLoS One ; 19(4): e0301447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557762

RESUMO

Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.


Assuntos
Furilfuramida , Tretinoína , Humanos , Receptores X de Retinoides/genética , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Ligantes , Tretinoína/farmacologia , Tretinoína/metabolismo , Epiderme/metabolismo , Receptores Citoplasmáticos e Nucleares
11.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
12.
Expert Opin Drug Discov ; 19(5): 511-522, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654653

RESUMO

INTRODUCTION: Despite numerous antidiabetic medications available for the treatment of type 2 diabetes, a substantial percentage of patients fail to achieve optimal glycemic control. Furthermore, the escalating obesity pandemic underscores the urgent need for effective relevant pharmacotherapies. Tirzepatide, a novel dual GIP and GLP-1 receptor agonist, offers a promising therapeutic option. AREAS COVERED: This review describes the discovery and clinical development of tirzepatide. Based on data from pivotal in vivo and in vitro studies, the authors present the pharmacodynamic profile of tirzepatide. Furthermore, they summarize data from the clinical trial programs that assessed the efficacy and safety of tirzepatide for the treatment of type 2 diabetes or obesity in a broad spectrum of patients, and discuss its therapeutic potential. EXPERT OPINION: Tirzepatide effectively reduces glucose levels and body weight in patients with type 2 diabetes and/or obesity, with a generally safe profile. Based on data from phase 3 clinical trials, several agencies have approved its use for the treatment of type 2 diabetes and obesity. Clinicians should be aware of possible adverse events, mainly mild-to-moderate gastrointestinal side effects. Overall, tirzepatide represents a promising treatment option for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Desenvolvimento de Medicamentos , Descoberta de Drogas , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptor do Peptídeo Semelhante ao Glucagon 2 , Hipoglicemiantes , Obesidade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Obesidade/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/administração & dosagem , Glicemia/efeitos dos fármacos
14.
Sci Rep ; 14(1): 9398, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658642

RESUMO

Free Fatty Acid Receptor 4 (FFAR4), a G-protein-coupled receptor, is responsible for triggering intracellular signaling pathways that regulate various physiological processes. FFAR4 agonists are associated with enhancing insulin release and mitigating the atherogenic, obesogenic, pro-carcinogenic, and pro-diabetogenic effects, normally associated with the free fatty acids bound to FFAR4. In this research, molecular structure-based machine-learning techniques were employed to evaluate compounds as potential agonists for FFAR4. Molecular structures were encoded into bit arrays, serving as molecular fingerprints, which were subsequently analyzed using the Bayesian network algorithm to identify patterns for screening the data. The shortlisted hits obtained via machine learning protocols were further validated by Molecular Docking and via ADME and Toxicity predictions. The shortlisted compounds were then subjected to MD Simulations of the membrane-bound FFAR4-ligand complexes for 100 ns each. Molecular analyses, encompassing binding interactions, RMSD, RMSF, RoG, PCA, and FEL, were conducted to scrutinize the protein-ligand complexes at the inter-atomic level. The analyses revealed significant interactions of the shortlisted compounds with the crucial residues of FFAR4 previously documented. FFAR4 as part of the complexes demonstrated consistent RMSDs, ranging from 3.57 to 3.64, with minimal residue fluctuations 5.27 to 6.03 nm, suggesting stable complexes. The gyration values fluctuated between 22.8 to 23.5 nm, indicating structural compactness and orderliness across the studied systems. Additionally, distinct conformational motions were observed in each complex, with energy contours shifting to broader energy basins throughout the simulation, suggesting thermodynamically stable protein-ligand complexes. The two compounds CHEMBL2012662 and CHEMBL64616 are presented as potential FFAR4 agonists, based on these insights and in-depth analyses. Collectively, these findings advance our comprehension of FFAR4's functions and mechanisms, highlighting these compounds as potential FFAR4 agonists worthy of further exploration as innovative treatments for metabolic and immune-related conditions.


Assuntos
Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Humanos , Ligantes , Ligação Proteica , Teorema de Bayes , Sítios de Ligação
15.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658922

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Assuntos
Hematoma , Acidente Vascular Cerebral Hemorrágico , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Recuperação de Função Fisiológica , Animais , Camundongos , Hematoma/tratamento farmacológico , Hematoma/patologia , Hematoma/metabolismo , Masculino , Acidente Vascular Cerebral Hemorrágico/patologia , Acidente Vascular Cerebral Hemorrágico/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/tratamento farmacológico , Microglia/efeitos dos fármacos , Microglia/metabolismo
16.
Behav Neurosci ; 138(2): 108-124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661670

RESUMO

The cannabinoid system is being researched as a potential pharmaceutical target for a multitude of disorders. The present study examined the effect of indirect and direct cannabinoid agonists on mesolimbic dopamine release and related behaviors in C57BL/6J (B6) mice. The indirect cannabinoid agonist N-arachidonoyl serotonin (AA-5-HT) indirectly agonizes the cannabinoid system by preventing the metabolism of endocannabinoids through fatty acid amide hydrolase inhibition while also inhibiting transient receptor potential vanilloid Type 1 channels. Effects of AA-5-HT were compared with the direct cannabinoid receptor Type 1 agonist arachidonoyl-2'-chloroethylamide (ACEA). In Experiment 1, mice were pretreated with seven daily injections of AA-5-HT, ACEA, or vehicle prior to assessments of locomotor activity using open field (OF) testing and phasic dopamine release using in vivo fixed potential amperometry. Chronic exposure to AA-5-HT did not alter locomotor activity or mesolimbic dopamine functioning. Chronic exposure to ACEA decreased rearing and decreased phasic dopamine release while increasing the dopaminergic response to cocaine. In Experiment 2, mice underwent AA-5-HT, ACEA, or vehicle conditioned place preference, then saccharin preference testing, a measure commonly associated with anhedonia. Mice did not develop a conditioned place preference or aversion for AA-5-HT or ACEA, and repeated exposure to AA-5-HT or ACEA did not alter saccharin preference. Altogether, the findings suggest that neither of these drugs induce behaviors that are classically associated with abuse liability in mice; however, direct cannabinoid receptor Type 1 agonism may play more of a role in mediating mesolimbic dopamine functioning than indirect cannabinoid agonism. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Agonistas de Receptores de Canabinoides , Dopamina , Camundongos Endogâmicos C57BL , Animais , Dopamina/metabolismo , Masculino , Camundongos , Agonistas de Receptores de Canabinoides/farmacologia , Serotonina/metabolismo , Locomoção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Cocaína/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Atividade Motora/efeitos dos fármacos
18.
Sci Rep ; 14(1): 9181, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649680

RESUMO

The Cannabis sativa plant has been used for centuries as a recreational drug and more recently in the treatment of patients with neurological or psychiatric disorders. In many instances, treatment goals include relief from posttraumatic disorders, anxiety, or to support treatment of chronic pain. Ligands acting on cannabinoid receptor 1 (CB1R) are also potential targets for the treatment of other health conditions. Using an evidence-based approach, pharmacological investigation of CB1R agonists is timely, with the aim to provide chronically ill patients relief using well-defined and characterized compounds from cannabis. Hexahydrocannabinol (HHC), currently available over the counter in many countries to adults and even children, is of great interests to policy makers, legal administrators, and healthcare regulators, as well as pharmacologists. Herein, we studied the pharmacodynamics of HHC epimers, which activate CB1R. We compared their key CB1R-mediated signaling pathway activities and compared them to the pathways activated by Δ9-tetrahydrocannabinol (Δ9-THC). We provide evidence that activation of CB1R by HHC ligands is only broadly comparable to those mediated by Δ9-THC, and that both HHC epimers have unique properties. Together with the greater chemical stability of HHC compared to Δ9-THC, these molecules have a potential to become a part of modern medicine.


Assuntos
Dronabinol , Receptor CB1 de Canabinoide , Transdução de Sinais , Dronabinol/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/agonistas , Transdução de Sinais/efeitos dos fármacos , Humanos , Canabinol/farmacologia , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Células HEK293 , Camundongos
19.
Curr Opin Obstet Gynecol ; 36(3): 124-133, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597577

RESUMO

PURPOSE OF REVIEW: Identify the most recent and significant evidence regarding the ovulation trigger within the framework of a multicycle approach through DuoStim, providing valuable insights for improving treatment strategies in patients with a poor prognosis. RECENT FINDINGS: The trigger method plays a pivotal role in optimizing in-vitro fertilization (IVF) stimulation, influencing oocyte retrieval and maturation rates, as well as follicle recruitment in consecutive ovarian stimulations such as double stimulation. Decision-making involves multiple factors and, while guidelines exist for conventional stimulation, specific recommendations for the multicycle approach are not well established. SUMMARY: The different methods for inducing oocyte maturation underscore the need for personalization of IVF protocols. The GnRH agonist trigger induces rapid luteolysis and establishes favorable hormonal conditions that do not adversely affect the recruitment of consecutive follicular waves in the context of DuoStim. It serves as a valid alternative to hCG in freeze-all cycles. This strategy might enhance the safety and flexibility of ovarian stimulations with no impact on oocyte competence and IVF efficacy.


Assuntos
Fertilização In Vitro , Hormônio Liberador de Gonadotropina , Recuperação de Oócitos , Indução da Ovulação , Humanos , Indução da Ovulação/métodos , Feminino , Hormônio Liberador de Gonadotropina/agonistas , Fertilização In Vitro/métodos , Recuperação de Oócitos/métodos , Gravidez , Fármacos para a Fertilidade Feminina/uso terapêutico , Prognóstico , Pamoato de Triptorrelina/uso terapêutico , Taxa de Gravidez , Gonadotropina Coriônica/uso terapêutico
20.
JAAPA ; 37(4): 1-4, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531038

RESUMO

ABSTRACT: Type 2 diabetes mellitus (T2DM) is a chronic medical condition affecting millions of individuals worldwide. The burden of disease is significant, as demonstrated by high morbidity and mortality and billions of healthcare dollars spent. The pathophysiology of T2DM is complex, with eight primary deficits. In recent years, an increased focus has been placed on incretin hormones, such as glucagon-like peptide-1 (GLP-1) for its glucose-lowering benefits. Several FDA-approved short-acting and long-acting GLP-1 receptor agonists (GLP-1 RAs) are available in the United States for the treatment of T2DM. These are liraglutide, exenatide, dulaglutide, and semaglutide, all administered via subcutaneous injection. Semaglutide is also available in an oral formulation. A newer dual glucose-dependent insulinotropic peptide (GIP) and GLP-1 RA, tirzepatide, is available as a subcutaneous injectable. In addition to improving glycemic control, GLP-1 RAs have been shown to lower total body weight, BP, and cholesterol as well as to improve renal function and beta-cell proliferation. These agents should be considered in every patient with T2DM due to their substantial clinical benefits and potential to help reduce disease burden.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes , 60650 , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...